Design and development of paclitaxel-loaded bovine serum albumin nanoparticles for brain targeting.

نویسندگان

  • Amit Bansal
  • Deepak N Kapoor
  • Rishi Kapil
  • Neha Chhabra
  • Sanju Dhawan
چکیده

Bovine serum albumin (BSA) nanoparticles loaded with paclitaxel (PTX) were prepared using a desolvation technique. A 32 full factorial design (FFD) was employed to formulate nanoparticles. Nanoparticles were characterized for particle size by photon correlation spectroscopy and surface morphology by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Encapsulation efficiency, zeta potential and particle yield were also determined. Response surface linear modelling (RSLM) was used to predict the optimal formulation. Various models were applied to determine the release mechanism from PTX nanoparticles. The effect of drug-polymer ratio on the release profile of formulations was observed and was applied to determine the suitability of the predicted optimal formulation. A preliminary study to determine the feasibility of targeting the prepared nanoparticles to brain was also carried out using mice as in vivo models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles

Paclitaxel (Taxol(®)) is an important anticancer drug in clinical use for treatment of a variety of cancers. Because of its low solubility, it is formulated in high concentration in Cremophor EL(®) which induces hypersensitivity reactions. In this study, targeted delivery of paclitaxel-loaded nanoparticles was prepared by a desolvation procedure, crosslinked on the wall material of bovine serum...

متن کامل

Hyaluronic acid-serum albumin conjugate-based nanoparticles for targeted cancer therapy

Multiple carcinomas including breast, ovarian, colon, lung and stomach cancer, overexpress the hyaluronic acid (HA) receptor, CD44. Overexpression of CD44 contributes to key cancer processes including tumor invasion, metastasis, recurrence, and chemoresistance. Herein, we devised novel targeted nanoparticles (NPs) for delivery of anticancer chemotherapeutics, comprised of self-assembling Mailla...

متن کامل

Targeted Delivery of 5-fluorouracil with Monoclonal Antibody Modified Bovine Serum Albumin Nanoparticles

Herein, 1F2, an anti-HER2 monoclonal antibody (mAb), was covalently coupled to the surface of 5-Fluorouracil (5-FU) loaded bovine serum albumin (BSA) nanoparticles. Concerning two different crosslinkers for conjugation of 1F2, Maleimide-poly (ethylene glycol)-Succinimidyl carbonate (Mal-PEG5000-NHS) was selected due to its higher conjugation efficiency (23±4 %) obtained in comparison to N-succi...

متن کامل

Targeted Delivery of 5-fluorouracil with Monoclonal Antibody Modified Bovine Serum Albumin Nanoparticles

Herein, 1F2, an anti-HER2 monoclonal antibody (mAb), was covalently coupled to the surface of 5-Fluorouracil (5-FU) loaded bovine serum albumin (BSA) nanoparticles. Concerning two different crosslinkers for conjugation of 1F2, Maleimide-poly (ethylene glycol)-Succinimidyl carbonate (Mal-PEG5000-NHS) was selected due to its higher conjugation efficiency (23±4 %) obtained in comparison to N-succi...

متن کامل

BSA nanoparticles loaded with IONPs for biomedical applications: fabrication optimization, physicochemical characterization and biocompatibility evaluation

Objective(s): Cancer diagnosis in its early stages of progress, can enhance the efficiency of treatment utilizing conventional therapy methods. Non-biocompatibility of iron oxide nanoparticles (IONPs) has made a big challenge against their usage as a contrast agent. Efficient coverage by biomolecules such as albumin can be a solution to overcome this problem. Herein, albumin-coated IONPs were p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta pharmaceutica

دوره 61 2  شماره 

صفحات  -

تاریخ انتشار 2011